Hierarchical Multi-modal Contextual Attention Network for Fake News Detection

ADVISOR: Jia-Ling Koh PRESENTER: Xiao-Yuan Hung SOURCE: SIGIR'21 DATE: 2022/09/27

4

Introduction

Method

Experiment

Conclusion

Fake news detection

Approaches

• Text

- Traditional learning methods (hand-crafted features)
 - SVM
 - Decision Tree
- $\circ \quad \text{Deep learning approaches} \\$
 - RNN
 - CNN
- Multi-modal
 - \circ $\ \ \, \ \ \, \ Text$, Image
 - MVAE
 - SpotFake
 - \circ $\;$ Text, News publishers, Users
 - SAME

Problem

- Components previously methods employ to capture multimodal context are <u>too simple</u>
- Only utilize the output of the <u>last layers</u> of these hierarchical models, while <u>ignoring the intermediate hidden states</u>, which also capture rich linguistic information

Figure 4: A schematic diagram of the proposed SpotFake model. Value in () indicates number of neurons in a layer.

Challenges

Challenge 1

- How to fully utilize the multi-modal context information and extract highorder complementary information from it to enhance the performance of fake news detection?
- Propose a multi-modal contextual attention network to model the multimodal context for each news posts

Challenge 2

- How to explore and capture the hierarchical semantics of text information to learn a better representation of multi-modal news?
- Design a hierarchical encoding network to capture the rich hierarchical semantics for fake news detection

Introduction

Method

Experiment

HMCAN

• Input

• Multi-modal post *P* from social media consisting of text messages and corresponding images

• Output

- Label of the post $Y = \{0, 1\}$
- \circ Y = 0 is real news
- \circ Y = 1 is fake news

- 1. Text and Image Encoding Network
- 2. Multi-modal Contextual Attention Network
- 3. Hierarchical Encoding Network
- 4. Fake News Detector

15

Text and Image Encoding Network

- Text Encoding Network
- Image Encoding Network

Text and Image Encoding Network

- Multi-modal post P = {W, R}
- Text Encoding Network
 - Input : W as a sequence of words $W = \{w_1, w_2, \cdots, w_m\}$
 - Output : word representation $S = \{s_1, \dots, s_m\}$
 - Model : pre-trained BERT

• Image Encoding Network

- Input : visual content R
- Output : a set of region features $O = \{o_1, \dots, o_n\}$
- Model : ResNet50

Multi-modal Contextual Attention Network

Multi-modal Contextual Attention Network

- Purpose: Extract high-order complementary information
- Input1: Text/Image
- Input2: Image/Text

Self-attention network *F*_{single}

- Purpose: learn the representation of input1(text)
- Intra-modality affinity matrix As
- Representation of text Hs

$$A_{s} = softmax \left(\frac{FC_{s}^{Q}(input1) \cdot FC_{s}^{K}(input1)^{\mathsf{T}}}{\sqrt{d}} \right)$$
(3)

$$H'_{s} = layer_norm(input1 + A_{s} \cdot FC_{s}^{V}(input1))$$
(4)

$$H_{s} = layer_norm(H_{s}^{'} + FC_{s}^{ff}(H_{s}^{'}))$$
(5)

* FC = full-connected layers
* FC^{ff} = two-layer full-connected network

Inter-modality attention network F_{co}

- Purpose:
 - extract information that is relevant to the image from the learned text representation, which can complement the visual information
- Inter-modality affinity matrix Aco
- Multi-modal context-aware text representation *Hco*

$$A_{co} = softmax \left(\frac{FC_{co}^{Q}(input2) \cdot FC_{co}^{K}(H_{s})^{\mathsf{T}}}{\sqrt{d}} \right)$$
(6)
$$H_{co}^{'} = layer_norm(input2 + A_{co} \cdot FC_{co}^{V}(H_{s}))$$
(7)
$$H_{co} = layer_norm(H_{co}^{'} + FC_{co}^{ff}(H_{co}^{'}))$$
(8)

Contextual Transformer 1 and 2

- Pooled into two feature vectors, and concatenated into a feature vector
- Contextual Transformer1 output C_{TI}
- Contextual Transformer2 output C_{IT}

$$C = \alpha C_{TI} + \beta C_{IT}$$
, where $\alpha + \beta = 1$.

Hierarchical Encoding Network

- BERT can provide hierarchical semantics for text
- Through different multi-modal contextual attention network units, get different C values

Hierarchical Encoding Network

- Purpose: to capture the rich hierarchical semantics
- Group 12 layer outputs into g groups (g = 3)
- $fB(W)_{j,i}$
 - *j*-th layer BERT for the *i*-th word in text W
- S_i^k
 - Initial representation of the *k*-th group of the *i*-th word
- *d*_w
 - Dimension of the word embedding

$$\mathbf{s_{i}^{0}} = \sum_{j=1}^{4} f_{B}(W)_{j,i}, \ \mathbf{s_{i}^{1}} = \sum_{j=5}^{8} f_{B}(W)_{j,i}, \ \mathbf{s_{i}^{2}} = \sum_{j=9}^{12} f_{B}(W)_{j,i}$$
(9)
$$C = concat(C^{0}, C^{1}, C^{2})$$
(10)

Fake News Detector

- Input
 - Multi-modal representation C
- Output
 - label Y
- P_n hat
 - Predicted probabilities of the *n*-th post
- *C*_n
 - feature representation of the *n*-th post
- Activation function
 - softmax

$$\hat{P}_n = \sigma(W_f C_n + b) \tag{11}$$

Loss function

• Cross entropy

$$\mathcal{L}(\Theta) = \sum_{n=1}^{N} - [Y_n \log(\hat{P}_n) + (1 - Y_n) \log(1 - \hat{P}_n)]$$
(12)

4

Method

Experiment

Conclusion

Dataset

- WEIBO
 - each post contains three elements (i.e., id, text and image)

• TWITTER

- textual information, visual information and social context information
- PHEME
 - 5 breaking news, each containing a set of posts

News	WEIBO	TWITTER	PHEME
# of Fake News	4749	7898	1972
# of Real News	4779	6026	3830
# of Images	9528	514	3670

Dataset WEIBO	Mathada	Accuracy	Fa	ke news		Real news		
	Wiethous	Accuracy	Precision	Recall	F1	Precision	Recall	F1
	# SVM-TS	0.640	0.741	0.573	0.646	0.651	0.798	0.711
	# GRU	0.702	0.671	0.794	0.727	0.747	0.609	0.671
	#CNN	0.740	0.736	0.756	0.744	0.747	0.723	0.735
	SAFE	0.763	0.833	0.659	0.736	0.717	0.868	0.785
	att_RNN	0.772	0.854	0.656	0.742	0.720	0.889	0.795
WEIBO	EANN	0.782	0.827	0.697	0.756	0.752	0.863	0.804
	# TextGCN	0.787	0.975	0.573	0.727	0.712	0.985	0.827
	MVAE	0.824	0.854	0.769	0.809	0.802	0.875	0.837
	SpotFake	0.869	0.877	0.859	0.868	0.861	0.879	0.870
	SpotFake*	0.892	0.902	0.964	0.932	0.847	0.656	0.739
	SpotFake+	0.870	0.887	0.849	0.868	0.855	0.892	0.873
	HMCAN	0.885	0.920	0.845	0.881	0.856	0.926	0.890

Single-modal Models SpotFake : reproduction by author

Dataset	Methods	Accuracy	Fa	ke news		Real news			
	Methous	Accuracy	Precision	Recall	F1	Precision	Recall	F1	
	# SVM-TS	0.529	0.488	0.497	0.496	0.565	0.556	0.561	
	# GRU	0.634	0.581	0.812	0.677	0.758	0.502	0.604	
	#CNN	0.549	0.508	0.597	0.549	0.598	0.509	0.550	
	SAFE	0.766	0.777	0.795	0.786	0.752	0.731	0.742	
	att_RNN	0.664	0.749	0.615	0.676	0.589	0.728	0.651	
TWITTED	EANN	0.648	0.810	0.498	0.617	0.584	0.759	0.660	
IWIIIEK	# TextGCN	0.703	0.808	0.365	0.503	0.680	0.939	0.779	
	MVAE	0.745	0.801	0.719	0.758	0.689	0.777	0.730	
	SpotFake	0.771	0.784	0.744	0.764	0.769	0.807	0.787	
	SpotFake*	0.777	0.751	0.900	0.820	0.832	0.606	0.701	
	SpotFake+	0.790	0.793	0.827	0.810	0.786	0.747	0.766	
	HMCAN	0.897	0.971	0.801	0.878	0.853	0.979	0.912	

Dataset	Methods	Accuracy	Fa	ke news		Real news		
	Methous	Accuracy	Precision	Recall	F1	Precision	Recall	F1
	# SVM-TS	0.639	0.546	0.576	0.560	0.729	0.705	0.717
	# GRU	0.832	0.782	0.712	0.745	0.855	0.896	0.865
	#CNN	0.779	0.732	0.606	0.663	0.799	0.875	0.835
	SAFE	0.811	0.827	0.559	0.667	0.806	0.940	0.866
	att_RNN	0.850	0.791	0.749	0.770	0.876	0.899	0.888
DHEME	EANN	0.681	0.685	0.664	0.694	0.701	0.750	0.747
FIEME	# TextGCN	0.828	0.775	0.735	0.737	0.827	0.828	0.828
	MVAE	0.852	0.806	0.719	0.760	0.871	0.917	0.893
	SpotFake	0.823	0.743	0.745	0.744	0.864	0.863	0.863
	SpotFake+	0.800	0.730	0.668	0.697	0.832	0.869	0.850
	HMCAN	0.881	0.830	0.838	0.834	0.910	0.905	0.907

Confusion matrix

https://www.researchgate.net/figure/Confusion-matrix-illustrating-the-calculation-of-precision-recall-and-F1-score_fig1_327982563

HMCAN-V : remove visual information HMCAN-C : remove multi-modal contextual attention network removed HMCAN-H : remove hierarchical information of words

Dataset	Methods	Accuracy	Fa	ke news		Real news			
Dataset	Methous	Accuracy	Precision	Recall	F1	Precision	Recall	F1	
	HMCAN $\neg V$	0.809	0.832	0.774	0.802	0.788	0.843	0.815	
WEIBO	HMCAN $\neg C$	0.872	0.902	0.836	0.868	0.847	0.909	0.877	
	HMCAN $\neg H$	0.877	0.871	0.885	0.878	0.883	0.869	0.876	
	HMCAN	0.885	0.920	0.845	0.881	0.856	0.926	0.890	
TURTED	HMCAN $\neg V$	0.755	0.828	0.590	0.689	0.719	0.896	0.798	
	HMCAN $\neg C$	0.790	0.886	0.622	0.731	0.743	0.932	0.827	
IWIIIEK	HMCAN $\neg H$	0.879	0.884	0.849	0.866	0.875	0.906	0.890	
	HMCAN	0.897	0.971	0.801	0.878	0.853	0.979	0.912	
PHEME	HMCAN $\neg V$	0.854	0.814	0.763	0.788	0.873	0.904	0.888	
	HMCAN $\neg C$	0.858	0.788	0.821	0.804	0.899	0.878	0.888	
	HMCAN $\neg H$	0.871	0.808	0.828	0.818	0.906	0.894	0.900	
	HMCAN	0.881	0.830	0.838	0.834	0.910	0.905	0.907	

Impact of the value of α

 $C = \alpha C_{TI} + \beta C_{IT}$, where $\alpha + \beta = 1$.

Impact of the number of group g

Conclusion

- Propose a novel <u>hierarchical multi-modal</u> contextual attention network (HMCAN) for fake news detection task
- A multi-modal contextual attention network is proposed to <u>fuse both inter-modality and intra-modality relationships</u>
- Design a hierarchical encoding network to capture the rich <u>hierarchical semantics</u>

(Add Info)MVAE

WC (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
24.9 (24.8)	35.9 (6.1)	63.6 (9.0)	50.3 (0.3)	82.2 (18.4)	77.6 (10.2)	76.7 (26.3)	49.9 (-0.1)	53.9 (3.9)
65.0 (64.8)	40.6 (11.3)	71.3 (16.1)	55.8 (5.8)	85.9 (23.5)	82.5 (15.3)	80.6 (17.1)	53.8 (4.4)	58.5 (8.5)
66.5 (66.0)	39.7 (10.4)	71.5 (18.5)	64.9 (14.9)	86.6 (23.8)	82.0 (14.6)	80.3 (16.6)	55.8 (5.9)	59.3 (9.3)

2	95.9 (3.4)	65.0 (64.8)	40.6 (11.3)	71.3 (16.1)	55.8 (5.8)	85.9 (23.5)	82.5 (15.3)	80.6 (17.1)	53.8 (4.4)	58.5 (8.5)
3	96.2 (3.9)	66.5 (66.0)	39.7 (10.4)	71.5 (18.5)	64.9 (14.9)	86.6 (23.8)	82.0 (14.6)	80.3 (16.6)	55.8 (5.9)	59.3 (9.3)
4	94.2 (2.3)	69.8 (69.6)	39.4 (10.8)	71.3 (18.3)	74.4 (24.5)	87.6 (25.2)	81.9 (15.0)	81.4 (19.1)	59.0 (8.5)	58.1 (8.1)
5	92.0 (0.5)	69.2 (69.0)	40.6 (11.8)	81.3 (30.8)	81.4 (31.4)	89.5 (26.7)	85.8 (19.4)	81.2 (18.6)	60.2 (10.3)	64.1 (14.1)
6	88.4 (-3.0)	63.5 (63.4)	41.3 (13.0)	83.3 (36.6)	82.9 (32.9)	89.8 (27.6)	88.1 (21.9)	82.0 (20.1)	60.7 (10.2)	71.1 (21.2)
7	83.7 (-7.7)	56.9 (56.7)	40.1 (12.0)	84.1 (39.5)	83.0 (32.9)	89.9 (27.5)	87.4 (22.2)	82.2 (21.1)	61.6 (11.7)	74.8 (24.9)
8	82.9 (-8.1)	51.1 (51.0)	39.2 (10.3)	84.0 (39.5)	83.9 (33.9)	89.9 (27.6)	87.5 (22.2)	81.2 (19.7)	62.1 (12.2)	76.4 (26.4)
9	80.1 (-11.1)	47.9 (47.8)	38.5 (10.8)	83.1 (39.8)	87.0 (37.1)	90.0 (28.0)	87.6 (22.9)	81.8 (20.5)	63.4 (13.4)	78.7 (28.9)
10	77.0 (-14.0)	43.4 (43.2)	38.1 (9.9)	81.7 (39.8)	86.7 (36.7)	89.7 (27.6)	87.1 (22.6)	80.5 (19.9)	63.3 (12.7)	78.4 (28.1)
11	73.9 (-17.0)	42.8 (42.7)	36.3 (7.9)	80.3 (39.1)	86.8 (36.8)	89.9 (27.8)	85.7 (21.9)	78.9 (18.6)	64.4 (14.5)	77.6 (27.9)
12	69.5 (-21.4)	49.1 (49.0)	34.7 (6.9)	76.5 (37.2)	86.4 (36.4)	89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)

SentLen (Surface)

93.9 (2.0)

Layer

1

(Add Info) TextGCN

